迁移学习导论在线阅读
会员

迁移学习导论

王晋东 陈益强
开会员,本书免费读 >

计算机网络人工智能14.5万字

更新时间:2021-06-09 16:28:52 最新章节:封底

立即阅读
加书架
下载
听书

书籍简介

迁移学习作为机器学习和人工智能领域的重要方法,在计算机视觉、自然语言处理、语音识别等领域都得到了广泛的应用。本书的编写目的是帮助迁移学习及机器学习相关领域的初学者快速入门。全书主要分为背景与概念、方法与技术、扩展与探索及应用与展望四大部分。在这四大部分中,我们详尽介绍了迁移学习的背景、概念、方法和应用。除此之外,本书还配有相关的代码、数据和论文资料,最大限度地降低初学者的学习和使用门槛。本书适合对迁移学习感兴趣的读者阅读,也可以作为相关课程的配套教材。
上架时间:2021-05-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

王晋东 陈益强
主页

同类热门书

最新上架

  • 会员
    《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,
    宋立桓 宋立林计算机10.8万字
  • 会员
    本书旨在帮助读者全面理解知识图谱的基本原理和概念。通过清晰的解释和实例,读者将深入了解知识图谱的构建、表示、推理等关键知识点。此外,本书通过提供代码实战,引导读者亲自动手构建知识图谱,并应用各种技术和工具进行实践。这种实践性的讲解方法可帮助读者更深入地理解知识图谱的实际应用。本书的目标是帮助读者全面理解知识图谱的基本原理和概念,并通过代码实战构建知识图谱。同时,本书也提供了关于大语言模型与知识图谱
    刘威编著计算机9.6万字
  • 会员
    量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第
    金贤敏 胡俊杰编著计算机7.6万字
  • 会员
    本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大
    于俊 刘淇 程礼磊 程明月计算机12.3万字
  • 会员
    《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。
    陈昭明 洪锦魁计算机15.2万字
  • 会员
    本书主要从软件开发者的角度探讨如何构建和设计深度学习系统。作者首先描述一个典型的深度学习系统的整体,包括其主要组件以及它们之间的连接方式,然后在各个单独的章节中深入探讨这些主要组件。对于具体介绍的章节,会在开始时讨论需求,接着介绍设计原则和示例服务/代码,并评估开源解决方案。通过阅读本书,读者将能够了解深度学习系统的工作原理,以及如何开发每个组件。本书的主要读者对象是想要从事深度学习平台工作或将一
    (美)王迟 (美)司徒杰鹏计算机18.1万字
  • 会员
    本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络
    叶翰嘉 詹德川计算机19.3万字
  • 会员
    本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经
    张旭东编著计算机20.6万字
  • 会员
    本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专
    肖睿 程鸣萱编著计算机11万字