
会员
人工智能数学基础
计算机网络计算机理论、基础知识8.5万字
更新时间:2024-12-27 21:56:23 最新章节:附录A 标准正态分布函数数值表
书籍简介
本书面向广大数据科学与人工智能专业的学生及初学者,力求通俗易懂、简洁清晰地呈现学习大数据与人工智能需要的基础数学知识,助力读者为进一步学习人工智能打好数学基础。全书分为4篇,共19章:微积分篇(第1~5章),主要介绍极限、导数、极值、多元函数导数与极值、梯度下降法等;线性代数篇(第6~10章),主要介绍向量、矩阵、行列式、线性方程组、特征值和特征向量等,并介绍这些数学知识在人工智能中的应用;概率统计篇(第11~17章),主要介绍概率、随机变量、数字特征、相关分析和回归分析,并介绍数据处理的基本方法和Pandas在数据处理中的应用;应用篇(第18章和第19章),主要介绍人工智能中典型的全连接神经网络和卷积神经网络。本书既有理论又有应用,既可以用纸笔计算,也可以用Python编程计算,读者可在学习过程中根据需要合理地选择侧重点。本书既可作为高职院校数据科学与人工智能专业的教材,也可作为相关产业从业者的自学或参考用书。
品牌:清华大学
上架时间:2023-06-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
陆伟峰 谷瑞主编
最新上架
- 会员《Web3.0》针对当下火热的Web3.0话题,介绍Web3.0的相关专业知识、技术实现方法及应用前景。全书共9章,第1章介绍了Web3.0的基本知识;第2、3章介绍了Web3.0的基础技术栈和拓展技术栈;第4章介绍了Web3.0的生态构建,包括去中心化自治组织、开放式金融、加密货币、代币经济与数字市场、数字身份、创造者经济、注意力经济等;第5章阐述了Web3.0的行业应用;第6章介计算机13万字
- 会员本书共共15章,主要包括多源信息融合处理理论与方法及多源信息目标检测、识别和应用两部分内容。书中具体讲述了多源信息融合处理的基本概念以及多源信息融合发展的核心理论方法,如Dempster-Shafer证据理论等;介绍了多源高冲突信息鲁棒性证据推理方法、多辨识框架下异构证据融合方法以及多值迁移融合方法等多种融合技术;给出了多源信息融合的典型应用,特别是在不确定数据分类、多源信息融合检测与识别领域的实计算机17万字
- 会员本书以理论为基础,以应用为导向,用大量的实例对Access数据库的应用进行全面讲解。全书共8章,主要内容包括数据库的基础知识、Access的基本操作、表的构建、查询的创建、窗体的设计、报表的设计、宏的自动化操作,以及数据库文件的管理。知识点覆盖《全国计算机等级考试二级Access数据库程序设计》考试大纲规定的内容。在介绍Access操作方法的同时,安排大量的动手练案例,并且穿插知识延伸小体例,理论计算机8.5万字
- 会员《UI设计基础与应用标准教程(全彩微课版)》围绕UI设计进行编写,以理论+实操为编写原则,用通俗易懂的语言对UI设计的相关知识进行详细介绍。《UI设计基础与应用标准教程(全彩微课版)》共9章,内容涵盖UI设计学习入门、图标设计、控件设计、动效设计、App界面设计、网页界面设计、软件界面设计、界面的标注与切图、综合实战案例等。在介绍理论知识的同时,穿插了大量的实操案例,第1~8章结尾还安排了实战演练计算机6万字
- 会员本书内容是在充分利用偏最小二乘原理优势的基础上,重点研究改进与优化偏最小二乘的不足方面,使其更好地适应中医药数据分析。主要内容包括分别引入非径向数据包络分析和降噪稀疏自编码器优化偏最小二乘的噪声处理,使其处理缺失值和噪声更有效;分别引入特征相关、L1正则项和灰色关联优化偏最小二乘的特征提取,实现有效降维和提取特征子集;分别融合受限玻尔兹曼机、稀疏自编码器、深度置信网络提取非线性成分,优化偏最小二乘计算机10.5万字
- 会员本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍计算机12.5万字
- 会员本书深入剖析了互联网主导下的数字广告系统,详细阐述了如何通过数据驱动的产品技术、计算算法和动态定价模型来推进广告主的数字营销,并使其在广告领域与技术广告体系全面融合。同时,本书还探讨了数字化升级对广告业流程的影响,包括市场研究、内容匹配、定制化广告、广告竞投以及消费者沉浸式互动和用户忠诚度提升等营销职能。这些内容共同构建了数字化和智能化广告发展的综合知识体系。全书分为三篇(共10章):第一篇为基础计算机30.5万字
同类书籍最近更新
- 会员本书针对计算机相关专业对数学课程的需求编写而成,共分为6章,详细讲述了包括算法基础、向量与矩阵、图形变换的矩阵方法、线性方程组、图与网络分析、树、MATLAB入门等内容。本书在内容的选取上遵循“应用导向,必需够用”的原则,以计算机图形变换实现、Google网站排名算法、网络分析中的最短路算法、最小连接算法、数据挖掘中的决策树算法等为应用背景,重点介绍了工科学科中不可缺少的数学工具——向量、矩阵和基础知识9.1万字